organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Bromo-N-(dibenzylcarbamothioyl)benzamide

Mohd Faizal Md Nasir,^a Ibrahim N. Hassan,^a* Wan Ramli Wan Daud,^{b,a} Bohari M. Yamin^c and Mohammad B. Kassim^{c,a}

^aFuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, ^bDepartment of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and ^cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia Correspondence e-mail: ibnhum@gmail.com

Received 14 April 2011; accepted 19 April 2011

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.009 Å; R factor = 0.050; wR factor = 0.118; data-to-parameter ratio = 21.4.

The 2-bromobenzoyl group in the title compound, $C_{22}H_{19}BrN_2OS$, adopts an E conformation with respect to the thiono S atom across the N-C bond. In the crystal structure, the molecule is stablized by N-H···O intermolecular hydrogen bonds, forming a one-dimensional chain along the b axis.

Related literature

For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009). For the synthesis, see: Hassan et al. (2008a). For reference bond distances, see: Allen et al. (2004).

Experimental

Crystal data C22H19BrN2OS $M_r = 439.36$

Tetragonal, P43 a = 12.2833 (16) Å

c = 14.002 (4) A
V = 2112.6 (7) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.533, T_{\max} = 0.649$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.118$	$\Delta \rho_{\rm max} = 0.57 \ {\rm e \ A}^{-5}$
S = 0.93	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
5217 reflections	Absolute structure: Flack (1983),
244 parameters	with 2474 Friedel pairs
1 restraint	Flack parameter: -0.001 (11)

 $\mu = 2.06 \text{ mm}^{-1}$ T = 273 K

 $R_{\rm int} = 0.064$

 $0.35 \times 0.31 \times 0.23 \text{ mm}$

15683 measured reflections

5217 independent reflections

2506 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots Br1$ $N1 - H1A \cdots O1^{i}$	0.86 0.86	2.79 2.20	3.220(3) 2.903(4)	113 139
C				

Symmetry code: (i) -y + 1, $x, z - \frac{1}{4}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON.

The authors thank the Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, grant Nos. UKM-GUP-BTT-07-30-190 and UKM-OUP-TK-16-73/ 2010), and the Kementerian Pengajian Tinggi, Malaysia, for research fund No. UKM-AP-TK-05-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2677).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.

Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.

Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.

Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.

supplementary materials

Acta Cryst. (2011). E67, o1218 [doi:10.1107/S1600536811014711]

2-Bromo-N-(dibenzylcarbamothioyl)benzamide

M. F. M. Nasir, I. N. Hassan, W. R. Wan Daud, B. M. Yamin and M. B. Kassim

Comment

The title compound, I, is a thiourea derivative of dibenzylamine analogous to our previous reported, ethyl-2-(3-benzoylthioureido)acetate (Hassan *et al.*, 2008*a*), propyl-2-(3-benzoylthioureido)acetate (Hassan *et al.*, 2008*b*), butyl-2-(3-benzoylthioureido)acetate (Hassan *et al.*, 2008*c*) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004). The molecule has the 2-bromobenzoyl group adopting an *E* conformation, with respect to the thiono S atom across the N1—C8 bond, whereas both the phenyl ring of the dibenzylamine group adopt *E* and *Z* conformation relative to the S atom across the N2—C8 bond (Fig. 1). The phenyl ring, (C1–C6), and the thiourea fragment, (S1/N1/N2/C8), are essentially planar and the dihedral angle between them is 72.9 (2)°. The bond lengths and angles in the molecules are in normal ranges (Allen *et al.*, 1987).

Both phenyl rings, [C10/C11/C12/C13/C14/C15] and [C17/C18/C19/C20/C21/C22] are essentially planar and they are twisted to each other by a dihedral angle of 22.4 (4)°. There is weak intramolecular hydrogen bond, N1—H1A···Br1 (Table 1). As a result, one pseudo-six-membered ring (N1/H1A/Br1/C1/C6/C7) is formed. The intermolecular N1—H1A···O1 hydrogen bonds (Table 1,) links the molecules into a chain parallel to the *b* axis (Fig. 2).

Experimental

The title compound was synthesized according to a previously reported compound (Hassan *et al.*, 2008*a*). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from methanolic solution at room temperature (yield 83%).

Refinement

H atoms of both C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with $U_{iso} = 1.2U_{eq}(C)$ for aromatic 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂ 0.97 Å, $U_{iso} = 1.2U_{eq}(N)$ for N—H 0.86 Å.

Figures

Fig. 1. The molecular structure of (I), with the atoms labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Partial packing view of (I) showing the formation of the chain through N—H···O hydrogen bondings. H bonds are shown as dashed lines. [Symmetry code: (i) -y + 1, x, z - 1/4]

 $D_{\rm x} = 1.381 {\rm Mg m}^{-3}$

 $\theta = 1.7 - 28.4^{\circ}$

 $\mu = 2.06 \text{ mm}^{-1}$ T = 273 K

Block, colourless

 $0.35 \times 0.31 \times 0.23 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2531 reflections

2-Bromo-N-(dibenzylcarbamothioyl)benzamide

Crystal data

C₂₂H₁₉BrN₂OS $M_r = 439.36$ Tetragonal, P4₃ Hall symbol: P 4cw a = 12.2833 (16) Å c = 14.002 (4) Å V = 2112.6 (7) Å³ Z = 4F(000) = 896

Data collection

Bruker SMART APEX CCD area-detector diffractometer	5217 independent reflections
Radiation source: fine-focus sealed tube	2506 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.064$
ω scans	$\theta_{\text{max}} = 28.4^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2000)	$h = -12 \rightarrow 16$
$T_{\min} = 0.533, T_{\max} = 0.649$	$k = -14 \rightarrow 16$
15683 measured reflections	$l = -18 \rightarrow 18$

Refinement

ouring
riedel
נ ק

Primary atom site location: structure-invariant direct Flack parameter: -0.001 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.20156 (4)	0.59332 (4)	0.23207 (5)	0.0975 (2)
S1	0.48743 (15)	0.81061 (10)	-0.01270 (10)	0.1136 (5)
01	0.5373 (2)	0.6765 (2)	0.2480 (2)	0.0656 (7)
N1	0.4138 (2)	0.6950 (2)	0.1306 (2)	0.0552 (8)
H1A	0.3584	0.6663	0.1027	0.066*
N2	0.4512 (3)	0.8761 (3)	0.1662 (2)	0.0642 (9)
C1	0.3189 (3)	0.4915 (3)	0.2306 (3)	0.0685 (11)
C2	0.2938 (5)	0.3838 (5)	0.2467 (4)	0.0973 (16)
H2A	0.2218	0.3628	0.2562	0.117*
C3	0.3751 (6)	0.3079 (4)	0.2485 (4)	0.1067 (18)
H3A	0.3579	0.2349	0.2578	0.128*
C4	0.4787 (5)	0.3375 (4)	0.2371 (5)	0.0959 (15)
H4A	0.5333	0.2851	0.2400	0.115*
C5	0.5061 (4)	0.4451 (3)	0.2210 (3)	0.0684 (11)
H5A	0.5786	0.4647	0.2126	0.082*
C6	0.4249 (3)	0.5240 (3)	0.2174 (3)	0.0567 (10)
C7	0.4632 (3)	0.6395 (3)	0.2022 (3)	0.0517 (10)
C8	0.4501 (4)	0.7972 (3)	0.1011 (3)	0.0638 (11)
C9	0.3979 (4)	0.8690 (3)	0.2597 (3)	0.0694 (12)
H9A	0.4523	0.8763	0.3095	0.083*
H9B	0.3645	0.7979	0.2663	0.083*
C10	0.3114 (4)	0.9563 (4)	0.2731 (4)	0.0733 (13)
C11	0.2355 (5)	0.9757 (5)	0.2031 (5)	0.120 (2)
H11A	0.2383	0.9383	0.1454	0.144*
C12	0.1542 (6)	1.0525 (7)	0.2202 (8)	0.156 (3)
H12A	0.1035	1.0672	0.1726	0.187*
C13	0.1477 (6)	1.1055 (6)	0.3037 (9)	0.137 (3)
H13A	0.0923	1.1556	0.3145	0.164*
C14	0.2215 (7)	1.0855 (5)	0.3709 (6)	0.116 (2)
H14A	0.2171	1.1222	0.4289	0.139*
C15	0.3049 (5)	1.0111 (4)	0.3565 (4)	0.0841 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15A	0.3562	0.9991	0.4041	0.101*
C16	0.5113 (4)	0.9773 (3)	0.1497 (4)	0.0799 (13)
H16A	0.4655	1.0387	0.1664	0.096*
H16B	0.5292	0.9831	0.0824	0.096*
C17	0.6145 (4)	0.9818 (3)	0.2075 (4)	0.0722 (13)
C18	0.6297 (6)	1.0599 (5)	0.2746 (5)	0.117 (2)
H18A	0.5758	1.1119	0.2839	0.140*
C19	0.7213 (7)	1.0642 (6)	0.3286 (7)	0.161 (4)
H19A	0.7279	1.1164	0.3763	0.193*
C20	0.8018 (6)	0.9934 (7)	0.3131 (6)	0.134 (3)
H20A	0.8672	1.0007	0.3459	0.160*
C21	0.7890 (5)	0.9132 (6)	0.2515 (7)	0.132 (3)
H21A	0.8432	0.8609	0.2443	0.158*
C22	0.6946 (5)	0.9072 (5)	0.1976 (4)	0.1103 (19)
H22A	0.6861	0.8508	0.1539	0.132*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0739 (3)	0.1215 (4)	0.0970 (4)	-0.0048 (3)	0.0148 (3)	0.0028 (4)
S1	0.1990 (16)	0.0888 (8)	0.0531 (7)	-0.0186 (9)	0.0167 (10)	0.0149 (8)
01	0.0769 (17)	0.0579 (16)	0.0620 (19)	-0.0059 (14)	-0.0219 (16)	0.0042 (14)
N1	0.064 (2)	0.056 (2)	0.0457 (18)	-0.0031 (16)	-0.0102 (15)	0.0076 (14)
N2	0.082 (2)	0.050 (2)	0.061 (2)	0.0049 (18)	-0.0021 (18)	0.0128 (18)
C1	0.083 (3)	0.072 (3)	0.051 (2)	-0.016 (2)	0.003 (3)	0.007 (2)
C2	0.108 (4)	0.097 (4)	0.087 (4)	-0.042 (4)	0.011 (3)	0.011 (3)
C3	0.156 (6)	0.066 (3)	0.098 (4)	-0.026 (4)	-0.007 (4)	0.014 (3)
C4	0.134 (5)	0.063 (3)	0.090 (4)	0.012 (3)	-0.004 (4)	0.019 (3)
C5	0.092 (3)	0.057 (2)	0.056 (3)	0.000 (2)	-0.005 (2)	0.013 (2)
C6	0.075 (3)	0.055 (2)	0.041 (2)	-0.009 (2)	-0.0036 (19)	0.0091 (18)
C7	0.060 (2)	0.056 (2)	0.039 (2)	0.007 (2)	-0.0019 (18)	0.0025 (17)
C8	0.079 (3)	0.054 (3)	0.058 (3)	0.001 (2)	-0.009 (2)	0.013 (2)
C9	0.076 (3)	0.065 (3)	0.067 (3)	0.006 (2)	-0.003 (2)	0.004 (2)
C10	0.070 (3)	0.056 (3)	0.094 (4)	0.001 (2)	-0.003 (3)	-0.004 (2)
C11	0.110 (4)	0.113 (4)	0.135 (6)	0.034 (4)	-0.056 (4)	-0.034 (4)
C12	0.117 (5)	0.139 (6)	0.212 (10)	0.046 (5)	-0.072 (6)	-0.031 (7)
C13	0.082 (5)	0.090 (5)	0.237 (10)	0.007 (4)	0.039 (6)	-0.006 (6)
C14	0.143 (6)	0.065 (4)	0.140 (6)	-0.003 (4)	0.042 (5)	-0.017 (4)
C15	0.099 (4)	0.058 (3)	0.095 (4)	-0.002 (3)	0.009 (3)	-0.009(3)
C16	0.109 (4)	0.049 (3)	0.082 (3)	-0.004 (3)	0.005 (3)	0.013 (2)
C17	0.080 (3)	0.048 (2)	0.089 (4)	0.000 (2)	0.011 (3)	-0.002 (2)
C18	0.129 (5)	0.079 (4)	0.143 (5)	0.021 (4)	-0.033 (4)	-0.041 (4)
C19	0.125 (6)	0.128 (5)	0.229 (10)	0.021 (5)	-0.057 (6)	-0.094 (6)
C20	0.095 (5)	0.148 (6)	0.159 (7)	-0.013 (5)	-0.022 (4)	-0.042 (5)
C21	0.087 (4)	0.143 (6)	0.166 (7)	0.027 (4)	0.004 (5)	-0.039 (6)
C22	0.105 (4)	0.110 (4)	0.116 (5)	0.013 (4)	0.007 (4)	-0.041 (3)

Geometric parameters (Å, °)

Br1—C1	1.909 (4)	C10—C11	1.372 (7)
S1—C8	1.666 (4)	C11—C12	1.394 (10)
O1—C7	1.203 (4)	C11—H11A	0.9300
N1—C7	1.356 (5)	C12—C13	1.341 (11)
N1—C8	1.396 (5)	C12—H12A	0.9300
N1—H1A	0.8602	C13—C14	1.329 (11)
N2—C8	1.330 (5)	C13—H13A	0.9300
N2—C16	1.464 (6)	C14—C15	1.388 (8)
N2—C9	1.467 (5)	C14—H14A	0.9300
C1—C6	1.375 (5)	C15—H15A	0.9300
C1—C2	1.376 (6)	C16—C17	1.505 (7)
C2—C3	1.367 (8)	C16—H16A	0.9700
C2—H2A	0.9300	C16—H16B	0.9700
C3—C4	1.334 (8)	C17—C22	1.352 (7)
С3—НЗА	0.9300	C17—C18	1.355 (7)
C4—C5	1.382 (6)	C18—C19	1.356 (9)
C4—H4A	0.9300	C18—H18A	0.9300
C5—C6	1.392 (5)	C19—C20	1.334 (9)
С5—Н5А	0.9300	C19—H19A	0.9300
C6—C7	1.509 (5)	C20—C21	1.319 (10)
C9—C10	1.521 (6)	C20—H20A	0.9300
С9—Н9А	0.9700	C21—C22	1.386 (9)
С9—Н9В	0.9700	C21—H21A	0.9300
C10—C15	1.350 (7)	C22—H22A	0.9300
C7—N1—C8	121.9 (3)	C10-C11-C12	118.7 (6)
C7—N1—H1A	119.0	C10-C11-H11A	120.6
C8—N1—H1A	119.2	C12—C11—H11A	120.6
C8—N2—C16	121.0 (4)	C13—C12—C11	121.4 (7)
C8—N2—C9	124.3 (3)	C13—C12—H12A	119.3
C16—N2—C9	114.6 (4)	C11—C12—H12A	119.3
C6—C1—C2	120.9 (4)	C14—C13—C12	119.1 (7)
C6—C1—Br1	121.7 (3)	C14—C13—H13A	120.4
C2—C1—Br1	117.3 (4)	С12—С13—Н13А	120.4
C3—C2—C1	119.7 (5)	C13—C14—C15	121.4 (7)
C3—C2—H2A	120.2	C13—C14—H14A	119.3
C1—C2—H2A	120.2	C15—C14—H14A	119.3
C4—C3—C2	120.6 (5)	C10-C15-C14	119.9 (6)
С4—С3—НЗА	119.7	C10-C15-H15A	120.1
С2—С3—НЗА	119.7	C14—C15—H15A	120.1
C3—C4—C5	120.8 (5)	N2-C16-C17	111.8 (4)
C3—C4—H4A	119.6	N2-C16-H16A	109.3
С5—С4—Н4А	119.6	C17—C16—H16A	109.3
C4—C5—C6	119.9 (5)	N2—C16—H16B	109.3
С4—С5—Н5А	120.1	C17—C16—H16B	109.3
С6—С5—Н5А	120.1	H16A—C16—H16B	107.9
C1—C6—C5	118.1 (4)	C22—C17—C18	116.8 (5)

supplementary materials

C1—C6—C7	126.0 (4)	C22—C17—C16	122.2 (5)
C5—C6—C7	115.9 (4)	C18—C17—C16	121.0 (5)
O1—C7—N1	122.9 (3)	C17—C18—C19	121.9 (6)
O1—C7—C6	121.1 (3)	C17-C18-H18A	119.1
N1—C7—C6	115.9 (3)	C19—C18—H18A	119.1
N2—C8—N1	117.1 (3)	C20—C19—C18	119.9 (7)
N2—C8—S1	125.5 (3)	С20—С19—Н19А	120.0
N1—C8—S1	117.4 (3)	С18—С19—Н19А	120.0
N2	112.3 (4)	C21—C20—C19	120.3 (7)
N2—C9—H9A	109.1	C21—C20—H20A	119.8
С10—С9—Н9А	109.1	C19—C20—H20A	119.8
N2—C9—H9B	109.1	C20—C21—C22	119.7 (6)
С10—С9—Н9В	109.1	C20—C21—H21A	120.2
Н9А—С9—Н9В	107.9	C22—C21—H21A	120.2
C15—C10—C11	119.4 (5)	C17—C22—C21	121.1 (5)
C15—C10—C9	119.9 (5)	C17—C22—H22A	119.4
C11—C10—C9	120.6 (5)	C21—C22—H22A	119.4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····Br1	0.86	2.79	3.220 (3)	113.
N1—H1A···O1 ⁱ	0.86	2.20	2.903 (4)	139.
Symmetry codes: (i) $-y+1$, x , $z-1/4$.				

